The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels.
نویسندگان
چکیده
We show here that in a yeast two-hybrid assay calmodulin (CaM) interacts with the intracellular C-terminal region of several members of the KCNQ family of potassium channels. CaM co-immunoprecipitates with KCNQ2, KCNQ3, or KCNQ5 subunits better in the absence than in the presence of Ca2+. Moreover, in two-hybrid assays where it is possible to detect interactions with apo-CaM but not with Ca2+-bound calmodulin, we localized the CaM-binding site to a region that is predicted to contain two alpha-helices (A and B). These two helices encompass approximately 85 amino acids, and in KCNQ2 they are separated by a dispensable stretch of approximately 130 amino acids. Within this CaM-binding domain, we found an IQ-like CaM-binding motif in helix A and two overlapping consensus 1-5-10 CaM-binding motifs in helix B. Point mutations in helix A or B were capable of abolishing CaM binding in the two-hybrid assay. Moreover, glutathione S-transferase fusion proteins containing helices A and B were capable of binding to CaM, indicating that the interaction with KCNQ channels is direct. Full-length CaM (both N and C lobes) and a functional EF-1 hand were required for these interactions to occur. These observations suggest that apo-CaM is bound to neuronal KCNQ channels at low resting Ca2+ levels and that this interaction is disturbed when the [Ca2+] is raised. Thus, we propose that CaM acts as a mediator in the Ca2+-dependent modulation of KCNQ channels.
منابع مشابه
Small Molecule Investigation of KCNQ Potassium Channels: A Dissertation
Voltage-gated K channels associate with multiple regulatory proteins to form complexes with diverse gating properties and pharmacological sensitivities. Small molecules which activate or inhibit channel function are valuable tools for dissecting the assembly and function of these macromolecular complexes. My thesis focuses on the discovery and use of small molecules to probe the structure and f...
متن کاملPolarized Axonal Surface Expression of Neuronal KCNQ Potassium Channels Is Regulated by Calmodulin Interaction with KCNQ2 Subunit
KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is i...
متن کاملCombinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers.
Noninactivating potassium current formed by KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) subunits resembles neuronal M-currents which are activated by voltage and play a critical role in controlling membrane excitability. Activation of voltage-gated potassium channels by a chemical opener is uncommon. Therefore, the mechanisms of action are worthy further investigation. Retigabine and zinc pyrithione are tw...
متن کاملNovel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction.
M utations in the voltage gated potassium channels KCNQ2 (OMIM 602235) and KCNQ3 (OMIM 602232) are associated with an autosomal dominant idiopathic epilepsy syndrome of newborns, benign familial neonatal seizures (BFNS) (OMIM 121200). BFNS is characterised by unprovoked partial seizures typically beginning when the infant is around three days old. BFNS associated genes were mapped to human chro...
متن کاملA Change in Configuration of the Calmodulin-KCNQ Channel Complex Underlies Ca2+-Dependent Modulation of KCNQ Channel Activity
All subtypes of KCNQ channel subunits (KCNQ1-5) require calmodulin as a co-factor for functional channels. It has been demonstrated that calmodulin plays a critical role in KCNQ channel trafficking as well as calcium-mediated current modulation. However, how calcium-bound calmodulin suppresses the M-current is not well understood. In this study, we investigated the molecular mechanism of KCNQ2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 32 شماره
صفحات -
تاریخ انتشار 2002